- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ghafari, Mehran (2)
-
Mailman, Daniel (2)
-
Qin, Hong (2)
-
Dang, Weiwei (1)
-
Hatami, Parisa (1)
-
Peyton, Trevor (1)
-
Yang, Li (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ghafari, Mehran; Mailman, Daniel; Hatami, Parisa; Peyton, Trevor; Yang, Li; Dang, Weiwei; Qin, Hong (, 2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) |)High-throughput microfluidics-based assays can potentially increase the speed and quality of yeast replicative lifespan measurements. One major challenge is to efficiently convert large volumes of time-lapse images into quantitative measurements of cellular lifespans. Here, we address this challenge by prototyping an algorithm that can track cellular division events through family trees of cells. We generated a null distribution using single cells inside microfluidic traps. Based on this null distribution, we prototyped a maximum likelihood algorithm for cell tracking between images at different time-points. We inferred cell family trees through a likelihood based trace-back method. The branching patterns of the cell family trees are then used to infer replicative lifespan of the yeast mother cells. The longest branch of a cell family tree represents the full trajectory of a yeast mother cell. The replicative lifespan of this mother cell can be counted as the number of bifurcating branches of this family tree. In addition, we prototyped a different approach based on summing cells area which improved the replicative lifespan estimation significantly. These generic methods have the potential to accelerate the efficiency and expand the range of quantitative measurement of yeast replicative aging experiments.more » « less
An official website of the United States government
